SEA

PHYSICAL SCIENCES

		Paper - II	
S	ignature of Invigilators	OCT-11/02	Roll No.
1.			(In figures as in Admit Card
			Roll No
2.	-	,	(in words)
Ti	me Allowed : 75 Minutes]		[Maximum Marks: 100
In	structions for the Candidates		
1.	Write your Roll Number in the space	ce provided on the top o	f this page.
2.	This paper consists of fifty (50) mu	Itiple choice type quest	ions. All questions are compulsome
3.	Each item has upto four alternativ	e responses marked (A)), (B), (C) and (D). The answer should be should entirely be contained within the
	Correct method	Wrong method	OR A
4.	Your responses to the items for the Paper II only.	is paper are to be indi	cated on the ICR Answer Sheet under
5.	Read instructions given inside care	fully.	
6.	Extra sheet is attached at the end	of the booklet for rough	work
7.	You should return the test booklet paper with you outside the examination	to the invigilator at the	e end of paper and should not carry any
8.	There shall be no negative marking	y.	
9.	Use of calculator or any other elect	ronic devices is prohibi	ited.
પરી	ક્ષાર્થીઓ માટે સૂચનાઓ :		
٩.	આ પાનાની ટોચમાં દર્શાવેલી જગ્યામાં ત	ામારો રોલનંબર લખો.	
₹.	આ પ્રશ્નપત્રમાં બહવૈકલ્પિક ઉત્તરો ધરાવત	ા કલ પચાસ (૫૦) પશ્નો	આપેલા છે. બધા જ પ્રશ્નો ફરજિયાત છે.
3.	अत्यन अश्रम वधमा वध या २ अनवहादगर	(24) to 61 (1)	(B), (C) અને (D) વકે દર્શાવવામાં આવ્યા આપેલ ખાનામાં બરાબર સમાઈ જાય તે રીતે
	ખરી રીત: 🛕 ખ	ોટી રીત :	અથવા 🛕
8.	આ પ્રશ્નપત્રના જવાબ આપેલ ICR A	nswer Sheet -u Pa	per II વિભાગની નીચે આપેલ ખાનાઓમાં
ч.	અંદર આપેલ સૂચનાઓ કાળજીપૂર્વક વાંચ	ì.	
5.	આ બુકલેટની પાછળ આપેલું પાનું ૨ફ ક	 ામ માટે છે	
9.	પરીક્ષા સમય પૂરો થઈ ગયા પછી આ બુ લઈ જવો નહીં.	કલેટ જે તે નિરીક્ષકને સોપ	ો દેવી. કોઈપણ કાગળ પરીક્ષા ખંડની બહાર
c. e.	ખોટા જવાબ માટે નેગેટિવ ગુલાંકન પ્રથા નથી. કેલ્કયુલેટર અને ઈલેક્ટ્રોનિક યંત્રોનો પ્રયોગ કર	વાની મનાઈ છે	
			*
Phy.	SciII	1	[P.T.O.]

studysite.org

Phy.Sci.-II

PHYSICAL SCIENCES

PAPER-II

Note: This paper contains FIFTY (50) multiple-choice/Assertion and Reasoning/ Matching questions, each question carrying TWO (2) marks. Attempt All the questions.

	the questions.									
1.	The dimensions of Planck's	constant are :								
	(A) $[M^1 L^2 T^{-1}]$	(B) $[M^0 L^1 T^1]$	3							
	(C) $[M^0 L^2 T^{-2}]$	(D) $[M^1 L^1 T^1]$								
2.	If exp $(i \alpha A)$ has to be unitary for any Hermitian matrix A, then α should									
	be:	O'Y								
	(A) Imaginary	(B) Complex								
	(C) Real	(D) Infinite								
3.	FT 7 1									
	(A) 1	(B) 0								
	(A) 1 (C) s	(D) $\frac{1}{s}$								
4.	Which of the following corre	esponds to \sqrt{i} , when $i = \sqrt{-1}$?								
	(A) $\frac{1}{\sqrt{2}}(1+i)$	(B) $\frac{1}{\sqrt{2}}(1-i)$								
	(C) -1	(D) 0								

- 5. The order of the Legendre differential equation is :
 - (A) 1 (B) 2
 - (C) -1 (D) 0
- 6. The unit of the Lagrangian is:
 - (A) Newton . (B) Joule
 - (C) Meter (D) Coulomb

Phy.Sci.-II 3 [P.T.O.]

- 7. The Lagrangian of the particle of mass 'm' executing simple harmonic motion in one dimension can be given as :
 - (A) $\frac{p^2}{2m}$

(B) $\frac{p^2}{2m} + \frac{1}{2} kx^2$

(C) $\frac{p^2}{2m} - \frac{1}{2} kx^2$

- (D) $\frac{1}{2}kx^2$
- 8. The reduced mass of 6 particles of equal mass 'm' is :
 - (A) m^6

(B) m

(C) 6m

- (D) m/6
- 9. The D'Alembertian operator in four-space is defined as :
 - (A) ∇²

(B) $\frac{1}{c^2} \frac{\partial^2}{\partial t^2}$

(C) $\nabla^2 + \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$

- (D) $\nabla^2 \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$
- 10. The number of independent components in the case of symmetric moment of inertia tensor are:
 - (A) 3

(B) 6

(C) 9

- (D) 2
- 11. The electric (E) and magnetic (B) field amplitudes associated with an electromagnetic radiation from a point source behave at a distance r from the source is:
 - (A) $E \propto 1/r$, $B \propto 1/r$
 - (B) E = constant , B = constant
 - (C) $E \propto 1/r^2$, $B \propto 1/r$
 - (D) $E \propto 1/r^3$, $B \propto 1/r^2$

Phy. Sci.-II

Two parallel large metal plates carry +Q and -Q respectively. A test charge placed between them experiences a force \overrightarrow{F} . Now the plates are moved apart 12. so that the separation between them is doubled. The force on test charge will now be:

(A)
$$\vec{F}/2$$

(B)
$$\overrightarrow{F}/4$$

(C)
$$\overrightarrow{\mathbf{F}}/\sqrt{2}$$

(D)
$$\overrightarrow{\mathbf{F}}$$

Electric field is called conservative field. Which of the following relation is 13. responsible for its conservative nature ?

(A)
$$\overrightarrow{\nabla} \cdot \overrightarrow{\mathbf{E}} = \rho / \in_0$$

(B)
$$\vec{\nabla} \cdot \vec{\mathbf{E}} = 0$$

(D) $\nabla^2 \vec{\mathbf{E}} = 0$

(C)
$$\overrightarrow{\nabla} \times \overrightarrow{\mathbf{E}} = 0$$

(D)
$$\nabla^2 \vec{E} = 0$$

A circular wire loop of radius R, rotates with an angular speed ω , in a uniform 14. magnetic field as shown in the figure

If the emf \in induced in the loop is \in_0 sin ωt , then the angular speed of the loop is:

(A)
$$\in_0 R/B$$

$$(B) \quad \in_0 /(\pi B R^2)$$

(C)
$$2\pi \in_0 / \mathbb{R}$$

(D)
$$\epsilon_0^2 / (BR^2)$$

Phy.Sci.-II

5

- The magnitude of the electric field due to an electric quadrupole, at a large 15. distance from the quadrupole varies as :
 - (A) $\frac{1}{r^2}$

- (D)
- The De Broglie wavelengths of a proton and alpha particle are equal. The 16. ratio of their velocities is :
 - (A) 2:1

(C) 1:4

- (D) 1:2
- If E1 is the energy of the lowest state of a one-dimensional potential box 17. of length 'a' and E2 is the energy of the lowest state when the length is halved, then:
 - $(A) \quad \mathbf{E}_2 = \mathbf{E}_1$

(B) $E_2 = 2E_1$ (D) $E_2 = 4E_1$

(C) $E_2 = 3E_1$

- For the wave function $\Psi = A \exp i(kx wt)$ the probability current density 18. is:
 - (A) $\frac{\hbar w}{m} |A|^2$

(B) $\frac{\hbar m}{b} |A|^2$

(C) $\frac{\hbar k}{m} |\mathbf{A}|^2$

- (D) $\frac{\hbar k}{m} |\mathbf{A}|^2$
- The degeneracy of a three-dimensional harmonic oscillator is : 19.
 - (A) n^2

(B) $\frac{1}{2}(2n+1)(2n+2)$

(C) $\frac{1}{2}(n+1)(n+2)$

(D) 2n + 1

Phy. Sci.-II

- $\sigma_x, \sigma_y, \sigma_z$ are the Pauli spin matrices. Which one of the following relations 20. is true?
 - (A) $\sigma_x \sigma_y = i \sigma_z$

(B) $\sigma_x \sigma_y = \sigma_z$

(C) $\sigma_x \sigma_y = -i \sigma_x \sigma_y$

- (D) $\sigma_x \sigma_y = \sigma_y \sigma_x$
- Second order phase transition is characterized by : 21.
 - (A) A latent heat
 - A discontinuous change in the specific heat (B)
 - A change in volume (C)
 - Hysteresis during warming and cooling (D)
- In a grand canonical ensemble, a system could exchange with the reservoir : 22.
 - (A) neither particles nor energy
 - particles only but not energy (B)
 - energy only but not particles (C)
 - (D) both particles and energy
- The pressure of non-interacting Fermi gas with internal energy U at 23. temperature T is:
 - (A) $P = \frac{3}{2} U/V$ (B) $P = \frac{2}{3} U/V$

(C) $P = \frac{3}{5} U/V$

(D) $P = \frac{1}{2} U/V$

Phy.Sci.-II

P.T.O.

24.	The specific	heat of an	ideal	Fermi	gas	in	three	dimension	at	very	low
	temperature	(T) varies	as :								110

(A) T

(B) T^{3/2}

(C) T²

(D) T³

25. In a case of a monatomic ideal gas containing N molecules, the specific heat at constant volume $C_{\rm V}$ of a gas at temperature T is :

(A) $\frac{1}{2}$ NK

(B) NK

(C) 2 NK

(D) $\frac{3}{2}$ NK

26. A 6 V Zener diode has a power dissipation of 120 mW. The maximum safe current that can be allowed to flow through it is:

(A) 5 mA

(B) 10 mA

(C) 20 mA

(D) 40 mA

27. The resolution of a 4 bit R - 2R ladder network having R = 10 k Ω and V_{ref} = 10 V is :

(A) 62.5 µA

(B) 125.0 μA

(C) 0.25 mA

(D) 1.0 mA

28. In an inverting amplifier configuration, if the value of feedback resistor is $10 \text{ k}\Omega$, that of input resistor is $1 \text{ k}\Omega$, then its gain would be :

(A) 11

(B) 10

(C) 0.1

(D) 1.0

Phy. Sci.-II

- (A) D-flip-flop with negative edge trigger
- (B) D-flip-flop with level triggered clock
- (C) RS flip-flop with inverted inputs
- (D) JK flip-flop without clock
- 30. The stack pointer in a microprocessor :
 - (A) Contains the data from the stack
 - (B) Contains the address of the first element of stack
 - (C) Contains address of the last element of stack
 - (D) Contains the return address
- 31. A square wave signal can be mathematically represented as sum of :
 - (A) Sine waves

(B) Triangular waves

(C) Random waves

- (D) Circular waves
- 32. To measure temperature electronically which of the following sensors/
 transducers would be used:
 - (A) LVDT

(B) Thermistor

(C) Pirani gauge

(D) Anemometer

Phy. Sci.-II

9

(C)

33.	Scatt	ered	data	points	can	be	fitted	to	a	line	by	using	method	of	•
	(A)	leas	st squ	are				()	B)	cł	ni-so	quare			

34. The sheet resistivity ρ_s of a sample of thickness t is measured by four probe method. The bulk resistivity ρ_b is given by :

(D)

max-deviation

- (A) $\rho_b = \rho_s / t \Omega m$ (B) $\rho_b = \rho_s . t \Omega m$ (C) $\rho_b = \rho_s / 2t \Omega m$ (D) $\rho_b = \rho_s / t^2 \Omega m$
- 35. For high input resistance of about 500 k Ω , the BJT configuration that should be used is :
 - (A) Common-emitter amplifier
 - (B) Common-base amplifier

gamma-match

- (C) Common-collector amplifier
- (D) R-C coupled amplifier
- 36. The frequency and wave number of a 300 nm line is :
 - (A) 10^3 MHz, 3333 cm⁻¹ (B) 10^{15} Hz, 33333 cm⁻¹
 - (C) $10^{13} \text{ Hz}, 33333 \text{ cm}^{-1}$ (D) $10^{15} \text{ Hz}, 3333 \text{ cm}^{-1}$
- 37. The total number of components observed for a $^2D_{3/2}$ $^2P_{3/2}$ transition in a weak magnetic field are :
 - (A) 6 (B) 10
 - (C) 12 (D) 14

Phy. Sci.-II 10

38.	The zero separation between consecutive vibrational levels of an anharmonic									
	oscil	lator corresponds to :								
	(A)	Zero point energy	(B)	Kinetic energy						
	(C)	Potential energy	(D)	Dissociation energy						
39.	The Doppler broadening is proportional to:									
	(A)	$\sqrt{ ext{T}}$	(B)	T						
	(C)	T^2	(D)	T-1/2						
	when	re T is an absolute temperatu	re of a	source.						
40.	The sharp, principal, diffuse etc series appear in the spectra of :									
	(A)	Alkali elements	(B)	Alkaline earth elements						
	(C)	Hydrogen atom	(D)	Rare gas atoms						
41.	In c	ase of intrinsic semiconductor	Fermi	energy lies :						
	(A)	in the middle of the band g	gap							
	(B)	near the conduction band e	dge							
	(C)	near the valence band edge		ē v						
	(D)	inside the conduction band								
42.	The	density of orbitals for free ele	ectron	gas in two dimension is:						
	(A)	∞ E ½.	(B)	$\propto E^{-\frac{1}{2}}$						

Phy. Sci.-II

(C)

∝ E

11

(D)

Independent of E

43. For the X-ray diffraction of f.c.c. structure no peaks appear for indices for which:

- (A) h + k + l = odd integer
- (B) h + k + l = even integer
- (C) h, k, l are partly odd and partly even

z tu

(D) all values of h, k, l

44. For n-type of semiconductor, the Hall coefficient RH will be :

(A) +ve

(B) -ve

(C) 0

(D) ∞

45. The low temperature heat capacity of insulators will be proportional to:

(A) T

(B) T²

(C) T³

(D) T⁴

46. In an experiment located deep underground the two types of cosmic rays that most commonly reach the experimental apparatus are :

- (A) Positrons and electrons
- (B) Alpha particles and neutrons
- (C) Protons and electrons
- (D) Muons and neutrinoes

Phy. Sci.-II

The contribution to the total binding energy of the nucleus AX by the surface 47. term is proportional to :

 $A^{-1/3}$ (A)

 $A^{1/3}$ (B)

 $A^{2/3}$ (C)

(D)

The decay chain for the $^{238}_{92}$ U nucleus involves eight α -decays and six 48. β decays. The final nucleus at the end of the process will have :

- (A) Z = 82, A = 206
- (B) Z = 84, A = 224(D) Z = 76, A = 200
- (C) Z = 88, A = 206

The decay of a free neutron: 49.

$$n \to p + e^- + \overline{\mathbf{v}}_e$$

- does not occur because of strangeness conservation (A)
- (B) occurs in nature with a half life of about 1000 seconds
- (C) does not occur because of energy conservation
- occurs in nature with half life of about 108 years (D)

Which of the following is a pair of doubly magic muclei? 50.

(A) ${}^{56}_{26}$ Fe and ${}^{36}_{18}$ Ar

(B) ${}^{208}_{82}$ Pb and ${}^{40}_{20}$ Ca

(C) 16 O and 238 U

(D) $^{194}_{78}$ Pt and $^{4}_{2}$ He

Phy. Sci.-II

13

P.T.O.

ROUGH WORK

Phy. Sci.-II

ROUGH WORK

Phy.Sci.-II

15

ROUGH WORK

Phy. Sci.-II