MATHEMATICS

PAPER-II

The figures in the margin indicate full marks for the questions
Candidates should answer Question Nos. 1 and 5 which are compulsory and any three from the rest selecting at least one from each Section

SECTION-A

1. Answer any five from the following : $12 \times 5=60$
(a) If H is a subgroup of G, let $N(H)=\left\{g \in G \mid g H g^{-1}=H\right\}$. Prove that
(i) $N(H)$ is a subgroup of G
(ii) H is normal in $N(H)$
(b) Let f and g be continuous on $[a, b]$. Prove that $f+g$ and $f \cdot g$ are also continuous on $[a, b]$.
(c) Prove that the complex valued function $f(z)$ defined by

$$
f(z)=\left\{\begin{array}{cl}
\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, & \text { if } z=x+i y \neq 0 \\
0, & \text { if } z=0
\end{array}\right.
$$

is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet $f^{\prime}(0)$ does not exist.
(d) Using graphical method, solve the following LPP :

$$
\operatorname{Max} Z=5 x_{1}+3 x_{2}
$$

subject to

$$
\begin{aligned}
3 x_{1}+5 x_{2} & \leq 15 \\
5 x_{1}+2 x_{2} & \leq 10 \\
x_{1}, \quad x_{2} & \geq 0
\end{aligned}
$$

(e) Prove that every Cauchy is bounded and converges to a real number.
(f) Show that $u=e^{-x}(x \sin y-y \cos y)$ is harmonic and find v such that $u+i v$ is analytic.
2. Answer the following five questions :
(a) Let G be the set of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where a, b, c, d are real numbers and $a d-b c \neq 0$. Show that G is an infinite non-Abelian group. $6+2+4$
(b) If H be a subgroup of a group G and $a, b \in G$, then what do you mean by " a is congruent to $b \bmod H$? Show that the relation $a \equiv b(\bmod H)(a$ is congruent to $b \bmod H$) is an equivalence relation.
(c) What do you mean by 'an automorphism of a group G ? If $\mathscr{B}(G)$ be the set of all automorphisms of a group G, then show that $\mathscr{C}(G)$ is a group. 4+8
(d) Define ring, integral domain and field. Prove that any field is an integral domain. Is the converse true? Justify.
(e) Define a 'Boolean ring'. Prove that a Boolean ring is a commutative ring. Is the converse true? Justify.
3. Answer the following five questions :
$12 \times 5=60$
(a) (i) What do you mean by 'a Riemann integrable function f on $[a, b]$?
(ii) Show that every continuous function is R-integrable.
(iii) If f is R-integrable on $[a, b]$ and m and M be g.l.b. and l.u.b. of f on $[a, b]$, then show that for $b \geq a$

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

(b) If $u=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}$, show that

$$
\text { (i) } x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u
$$

(ii) $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=2 \cos 3 u \cdot \sin u$
(c) Applying Cauchy's theorem and Cauchy's residue theorem, evaluate

$$
\int_{C} \frac{z-3}{z^{2}+2 z+5} d z
$$

where C is the contour
(i) $|z|=1$
(ii) $|z+1+i|=2$
(d) Applying contour integration method, prove that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\pi}{3} \tag{12}
\end{equation*}
$$

(e) Find the bilinear transformation which maps the points $z=1, i,-1$ onto the points $i, 0,-1$. Hence find the image of $|z|<1$.
4. Answer the following four questions :
(a) (i) What do you mean by a convex region?
(ii) Which of the following regions are convex?

A

B

C

D
(iii) Examine whether union and intersection of convex regions are convex or not.
(b) Find by the graphical method the maximum value of $Z=2 x+3 y$, subject to the constraints

$$
\begin{align*}
& x+y \leq 30, \quad y \geq 3 \\
& 0 \leq y \leq 12, \quad x-y \geq 0 \\
& 0 \leq x \leq 20 \tag{16}
\end{align*}
$$

(c) Define feasible solution, optimal solution, slack variables and surplus variables.
(d) Using simplex method, solve the following LPP :

$$
\operatorname{Max} Z=5 x_{1}+3 x_{2}
$$

subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 2 \\
5 x_{1}+2 x_{2} & \leq 10 \\
3 x_{1}+8 x_{2} & \leq 12 \\
x_{1}, \quad x_{2} & \geq 0
\end{aligned}
$$

SECTION-B

5. Answer any five parts :
(a) Form the partial differential equations by eliminating the arbitrary functions from $Z=f(x+a t)+g(x-a t)$.
(b) Solve

$$
\frac{\partial^{2} z}{\partial x^{2}}+z=0
$$

given that when $x=0, z=e^{y}$ and $\frac{\partial y}{\partial x}=1$.
(c). Solve

$$
\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z
$$

(d) Apply Gauss elimination method to solve the equations $x+4 y-z=-5$, $x+y-6 z=-12,3 x-y-z=4$.
(e) Using Newton-Raphson method, solve the equations $x=x^{2}+y^{2}$, $y=x^{2}-y^{2}$ correct to two decimals, starting with the approximation (0.8, 0.4).
(f) From the following table, estimate the number of students who obtained marks between 40 and 45 :

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of Students	31	42	51	35	31

6. Answer the following questions :
(a) Following PDIs are associated with practical phenomena. Name the equations mentioning the associated phenomena :
(i) $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
(ii) $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
(iii) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
(iv) $\left\{\begin{array}{l}-\frac{\partial V}{\partial x}=L \frac{\partial I}{\partial t} \\ -\frac{\partial I}{\partial x}=C \frac{\partial V}{\partial t}\end{array}\right.$.
(b) Find a real root of the equation $x \log _{10} x=1.2$ by regula-falsi method correct to four decimal places.
(c) Evaluate

$$
\begin{equation*}
\int_{0}^{6} \frac{d x}{1+x^{2}} \tag{12}
\end{equation*}
$$

by using Simpson's $\frac{1}{3}$ rd rule.
(d) Show that the moment of inertia of an elliptic area of mass M and semiaxes a and b about a diameter of length r is $\frac{1}{4} M \frac{a^{2} b^{2}}{r^{2}}$.
(e) (i) Where is the data for the 'hard disk type' stored in?
(ii) What is the capacity of DSDD floppy diskette?
(iii) Mouse is connected to which port?
(iv) Name a command which is not an internal DOS command.
7. Answer the following five questions :
(a) State D'Alembert's principle. Deduce the general equation of motion of a rigid body from D'Alembert's principle.
(b) What do you mean by holonomic system and non-holonomic system? Set up the Lagrangian for a simple pendulum, and obtain the equation describing its motion.
(c) (i) What do you mean by bit, byte and word?
(ii) Divide $1100_{2} \div 10_{2}$.
(iii) Add hexadecimal numbers $6 \mathrm{AE}_{16}+1 \mathrm{FA}_{16}$. $4+4+4$
(d) Draw the truth table for the following :
(i) $Y=A \cdot B+B . C$
(ii) $R=A(\bar{B}+\bar{C})$
(iii) 3-input OR-gate
(e) Create a sequential data file and store the serial number, name, basic pay, dearness allowance, house rent allowance, provident fund and LIC of 5 employees of a company.
8. Answer the following five questions :
(a) Use Lagrange's equations to find the differential equation for a compound pendulum which oscillates in a vertical plane about a fixed horizontal axis.
(b) $A B, B C$ are two equal similar rods freely hinged at B and lie in a straight line on a smooth table. The end A is struck by a blow perpendicular to $A B$; show that resulting velocity of A is $3 \frac{1}{2}$ times of B.12
(c) (i) Convert 38.21_{10} to its binary equivalent.
(ii) Convert 11011110101110_{2} to hexadecimal.
(iii) Convert $\mathrm{B}_{2} \mathrm{~F}_{16}$ to octal.
(d) (i) What is programming?
(ii) Name the steps required for program development.
(iii) What is programming language? $4+4+4$
(e) Write an algorithm to find whether a given number is odd or even. 12

